High Lift Heat Pump, Phase I

Completed Technology Project (2017 - 2017)

Project Introduction

NASA has identified a need for higher heat rejection temperatures due to an equatorial lunar mission profile, where surface temperatures reach 400 K. To meet this need for space exploration vehicles to reject waste heat to high temperature heat sinks, Mainstream proposes adapting our oil-less vapor-compression (V-C) refrigeration compressor technology for operation at high temperature and high lift. Vapor-compression systems use two-phase heat transfer which reduces component size and mass over single-phase heat pumping cycles such as reverse-Brayton or Stirling. Mainstream?s current oilless V-C compressor technology is gravity-insensitive, has a long operating life, can be scaled to match various heat loads, and has been mission-proven on the international space station (ISS) placing it at a TRL 9. The proposed development effort will extend this compressor technology to operation at high temperatures and high lift, to which it is inherently well-suited. The resulting compressor will be an enabling technology for the needed high temperature heat pumping systems.

Primary U.S. Work Locations and Key Partners

(Left)—module in International Space Station (Right)—Mainstream's compressor with housing removed

High Lift Heat Pump, Phase I Briefing Chart Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

High Lift Heat Pump, Phase I

Completed Technology Project (2017 - 2017)

Organizations Performing Work	Role	Туре	Location
Mainstream Engineering	Lead	Industry	Rockledge,
Corporation	Organization		Florida
Johnson Space	Supporting	NASA	Houston,
Center(JSC)	Organization	Center	Texas

Primary U.S. Work Locations	
Florida	Texas

Images

Briefing Chart Image

High Lift Heat Pump, Phase I Briefing Chart Image (https://techport.nasa.gov/imag e/130328)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Mainstream Engineering Corporation

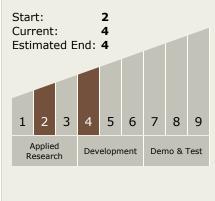
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Joshua Sole

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

High Lift Heat Pump, Phase I

Completed Technology Project (2017 - 2017)

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - └─ TX14.2 Thermal Control
 Components and Systems
 └─ TX14.2.3 Heat
 Rejection and Storage

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

